2-AMINATION OF 1,4-DIHYDROXYANTHRAQUINONE PROMOTED BY COPPER IONS

Masaru MATSUOKA*, Yoshinobu MAKINO*, Katsuhira YOSHIDA**, and Teijiro KITAO*

- * Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591
- ** Department of Chemistry, Faculty of Science, Kochi University, Akebono-cho, Kochi 780

2-Amination of 1,4-dihydroxyanthraquinone(DHAQ) was initiated by the formation of copper complex, which was oxidized to quinizarinquinone followed by the Michael addition of amines. Quantitative 2-amination of quinizarinquinone and reduction of copper ions to metal copper supported the mechanism.

In our previous paper 1 , the quantitative 2-butylamination of DHAQ $\frac{1}{2}$ in the presence of copper salts at ambient temperature was reported. Metal complex formed between quinone carbonyl group and -hydroxy group played a great role on this amination. It had been reported that the reaction of DHAQ-dimetaborate with amine gave 2-amino-DHAQ in a quantitative yield under atmospheric oxygen 2 . Some of the oxidizing agents, such as metal ions or oxygen, were necessary on this amination.

In this paper, we intend to clear the mechanism of this 2-amination of $\underline{1}$. In the reaction of $\underline{1}$ with butylamine in the presence of copper salts, reduction of copper ions to metal copper was observed (Table 1).

Table 1. The effect of copper salt on the 2-amination of $\underline{1}^{a}$)

rable 1. The effect of copper sait on the 2-amination of 1 Yield(%)											
Run	Copper salt	Mole ratio Cu-salt/DHAQ	Temp.	Time (hr)	<u>l</u> b)	2 [©]	<u>3</u> d)	<u>4</u> e)	Cu		
1	none	-	30	24	0	7.3	21.4	48.1	0		
2	$\text{CuCl}_2.2\text{H}_2\text{O}$	2	34	24	0	0	0	100	0		
3	"	1	30	24	0	0.6	0	76.3	3.8		
4	11	1/2	30	48	1.8	6.9	0	61.5	22.8		
5	CuC1	2	34	24	0	0	0	100	30.8		

a) Reactant 1 (5 mmol) was stirred in pyridine(8 ml) with butylamine(228 mmol) and copper salt in presence of air. b)Recovered of 1. c) 1-Hydroxy-4-butylaminoanthraquinone. d) 1.4-Bisbutylaminoanthraquinone. e) 1.4-Dihydroxy-2-butylaminoanthraquinone.

None of the reduction of copper salts was observed when copper salts in pyridine were treated with amines without DHAQ. Therefore, the oxydation of $\underline{1}$ by copper salts was proposed. The amount of copper deposited was increased with a decrease in the mole ratio of Cu-salt/DHAQ, and the yield of $\underline{4}$ was decreased with the increase of $\underline{2}$. If there were enough amount of copper ion, none of metal copper was isolated(Run 2). In the case of Cu(I)Cl, $\underline{4}$ was obtained in a quantitative yield and 30.8% of metal copper

was isolated (Run 5). Comparison of the results of Run 2 and Run 5 suggest one electron reduction of copper ion for each of chelate ring. If stoichiometrically enough copper ion did not present (Run 3 and 4), the reduction of Cu(II) ion to metal copper might proceed, but the details were not obvious. Without copper salt, $\underline{4}$ was obtained together with $\underline{2}$ and $\underline{3}$. From these results, it was found that the competitive α - and β -amination of $\underline{1}$ proceeded during the reaction but the metal complex was predominantly aminated at β -position. The effects of atmospheric oxygen as an oxidizing agent obvious but undesirable by-products ($\underline{2}$ and $\underline{3}$) were obtained under the atmospheric oxygen without metal ions (Run 1). The yields of $\underline{5}$ were decreased drastically under N_2 atmosphere or without oxygen (Run 7 and 8). While if enough amount of cupric chloride was present, $\underline{4}$ was obtained quantitatively even under the N_2 atmosphere (Run 9).

Table 2.	The effect of	Yield(%)					
Run	Metal salt	Amine	Atmosphere	Temp.(°C)	Time(hr)	<u>1</u> b)	<u>5</u> c)
6	none	Piperidine	open	30	48	0.5	89.3
7 ^{d)}	**	***	$^{\mathrm{N}}2$	30	24	4.1	28.0
8 ^{e)}	11	***	f)	30	24	3.1	28.3
9	CuCl ₂ .2H ₂ 0 ^{g)}	Butylamine	$^{ m N}2$	23	24	0	100 ^h)

- a) The mole ratio of reagents are the same as that of Table 1. b) Recovered of $\underline{1}$.
- c) 1,4-Dihydroxy-2-piperidinoanthraquinone. d) 2,2 Bis-DHAQ was obtained in a yield of 27.8%. e) d-Amination also proceeded as same the case of Run 1. f) Deoxygenation was carried out three times as follows; The reaction mixture was frozen with liquid N_2 and deoxygenated under reduced pressure. The reaction was carried out under reduced pressure. g) Cu-salt/DHAQ (mole ratio)=2 h) The yield of $\frac{4}{2}$.

On the other hand, butylamination of quinizarinquinone $\underline{6}$, which was prepared previously by the oxidation of $\underline{1}$ with lead tetraacetate⁴⁾, gave $\underline{4}$ quantitatively at ambient temperature. These Michael addition of amines to p-quinone were well known⁵.)

The possible mechanism of 2-amination of 1 may be proposed as follows.

References and Notes

- 1) M.Matsuoka, Y.Makino, K.Yoshida and T.Kitao, Chem. Lett., 1979, 219.
- 2) V.V.Russkikh, S.A.Russkikh and E.P.Fokin, J. Org. Chem. USSR, 76, 2502(1971).
- 3) Copper chloride-pyridine system is well known to absorb atmospheric oxygen as an oxidizing agent. J.Tsuji and H.Takayanagi, Tetrahedron, 34, 641(1978).
- 4) O.Dimroth, O.Friedmann and H.Kaemmerer, Ber., 53, 481(1920).
- 5) K.Sugita and J.Kumanotani, Bull. Chem. Soc. Japan, 42, 2043(1969).
- 6) The structure of Cu-complex of $\underline{1}$ was recently reported. C.G.Pierport, L.C. Francesconi and D.N.Hendrickson, Inorg. Chem., 17, 3470(1978).

(Received August 14, 1979)